Rapid PCR in a continuous flow device.
نویسندگان
چکیده
Continuous flow polymerase chain reaction (CFPCR) devices are compact reactors suitable for microfabrication and the rapid amplification of target DNAs. For a given reactor design, the amplification time can be reduced simply by increasing the flow velocity through the isothermal zones of the device; for flow velocities near the design value, the PCR cocktail reaches thermal equilibrium at each zone quickly, so that near ideal temperature profiles can be obtained. However, at high flow velocities there are penalties of an increased pressure drop and a reduced residence time in each temperature zone for the DNA/reagent mixture, that potentially affect amplification efficiency. This study was carried out to evaluate the thermal and biochemical effects of high flow velocities in a spiral, 20 cycle CFPCR device. Finite element analysis (FEA) was used to determine the steady-state temperature distribution along the micro-channel and the temperature of the DNA/reagent mixture in each temperature zone as a function of linear velocity. The critical transition was between the denaturation (95 degrees C) and renaturation (55 degrees C-68 degrees C) zones; above 6 mm s(-1) the fluid in a passively-cooled channel could not be reduced to the desired temperature and the duration of the temperature transition between zones increased with increased velocity. The amplification performance of the CFPCR as a function of linear velocity was assessed using 500 and 997 base pair (bp) fragments from lambda-DNA. Amplifications at velocities ranging from 1 mm s(-1) to 20 mm s(-1) were investigated. The 500 bp fragment could be observed in a total reaction time of 1.7 min (5.2 s cycle(-1)) and the 997 bp fragment could be detected in 3.2 min (9.7 s cycle(-1)). The longer amplification time required for detection of the 997 bp fragment was due to the device being operated at its enzyme kinetic limit (i.e., Taq polymerase deoxynucleotide incorporation rate).
منابع مشابه
Rapid detection of genetically modified organisms on a continuous-flow polymerase chain reaction microfluidics.
The ability to perform DNA amplification on a microfluidic device is very appealing. In this study, a compact continuous-flow polymerase chain reaction (PCR) microfluidics was developed for rapid analysis of genetically modified organisms (GMOs) in genetically modified soybeans. The device consists of three pieces of copper and a transparent polytetrafluoroethylene capillary tube embedded in th...
متن کاملMathematical Simulation for the Effects of Flow Control Devices in a Six- strand Tundish in Continuous Casting of Steel Billet
The method of continuous casting of steel is now often used in the metallurgical industry, due to the increasing demand for the production of high – quality steel. An important device of continuous casting machine is the tundish, in which a stabilized steel flow has a crucial effect on the quality and efficiency conditions of the continuous casting process. In this study fluid flows in a six – ...
متن کاملStudy of a Liquid Plug-Flow Thermal Cycling Technique Using a Temperature Gradient-Based Actuator
Easy-to-use thermal cycling for performing rapid and small-volume DNA amplification on a single chip has attracted great interest in the area of rapid field detection of biological agents. For this purpose, as a more practical alternative to conventional continuous flow thermal cycling, liquid plug-flow thermal cycling utilizes a thermal gradient generated in a serpentine rectangular flow micro...
متن کاملRapid and highly sensitive detection by a real-time polymerase chain reaction using a chip coated with its reagents.
On-site detection by flow-through polymerase chain reaction (PCR) microfluidic systems for rapid and highly sensitive analysis, are significantly desired for bioanalytical and medical research. The conventional continuous-flow PCR chips realized rapid detection, but their sensitivity was very low (10(6) to 10(8) copies μL(-1)). We improved this drawback by coating the chip with a PCR reagents m...
متن کاملLow-cost, real-time, continuous flow PCR system for pathogen detection.
In this paper, we present a portable and low cost point-of-care (POC) PCR system for quantitative detection of pathogens. Our system is based on continuous flow PCR which maintains fixed temperatures zones and pushes the PCR solution between two heated areas allowing for faster heat transfer and as a result, a faster PCR. The PCR system is built around a 46.0 mm × 30.9 mm × 0.4 mm disposable th...
متن کاملFabrication of Polymerase Chain Reaction Plastic Lab-on-a-Chip Device for Rapid Molecular Diagnoses
PURPOSE We aim to fabricate a thermoplastic poly(methylmethacrylate) (PMMA) Lab-on-a-Chip device to perform continuous- flow polymerase chain reactions (PCRs) for rapid molecular detection of foodborne pathogen bacteria. METHODS A miniaturized plastic device was fabricated by utilizing PMMA substrates mediated by poly(dimethylsiloxane) interfacial coating, enabling bonding under mild conditio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Lab on a chip
دوره 4 6 شماره
صفحات -
تاریخ انتشار 2004